Chebyshev ’ S Differential Equation and Its Hyers – Ulam Stability
نویسنده
چکیده
We solve the inhomogeneous Chebyshev’s differential equation and apply this result to obtain a partial solution to the Hyers-Ulam stability problem for the Chebyshev’s differential equation.
منابع مشابه
Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملA Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces
Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.
متن کاملHyers-ulam stability of exact second-order linear differential equations
* Correspondence: baak@hanyang. ac.kr Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea Full list of author information is available at the end of the article Abstract In this article, we prove the Hyers-Ulam stability of exact second-order linear differential equations. As a consequence, we show the Hyers-Ulam stability of the fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009